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Abstract
We present an algorithm for the automatic alignment of two 3D shapes (data and model), without any assumptions
about their initial positions. The algorithm computes for each surface point a descriptor based on local geometry
that is robust to noise. A small number of feature points are automatically picked from the data shape according
to the uniqueness of the descriptor value at the point. For each feature point on the data, we use the descriptor
values of the model to find potential corresponding points. We then develop a fast branch-and-bound algorithm
based on distance matrix comparisons to select the optimal correspondence set and bring the two shapes into
a coarse alignment. The result of our alignment algorithm is used as the initialization to ICP (iterative closest
point) and its variants for fine registration of the data to the model. Our algorithm can be used for matching
shapes that overlap only over parts of their extent, for building models from partial range scans, as well as for
simple symmetry detection, and for matching shapes undergoing articulated motion.

1. Introduction and Background

Global registration, or optimal alignment of two three-
dimensional shapes in arbitrary initial positions, is a fun-
damental problem in shape acquisition and shape model-
ing. Given two shapes, often called the model and data, the
goal is to find a rigid transform that optimally positions, or
registers, the data with respect to the model. This process
is part of most 3D shape acquisition pipelines, where self-
occlusions and scanner limitations usually require the ac-
quisition of multiple partial scans that overlap. To build a
complete model, the partial scans need to be brought into
a common coordinate system (Figure 1), which is usually
done by pairwise registration. This problem is particularly
hard when no information is available about the initial posi-
tion of the model and data shapes, the inputs contain noise,
and the shapes overlap only over parts of their extent (and
the overlaps may not be known in advance).

Solutions to the registration problem fall into two gen-
eral classes. One class, known as voting methods, makes use
of the fact that the rigid transform is low-dimensional and
exhaustively searches for the small number of parameters
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needed to specify the optimal transform. Generalized Hough
transform [HB94], geometric hashing [WR97], and pose
clustering [Sto87] quantize the transformation space into a

Figure 1: Automatic registration of range data. Top: 10 in-
put scans (shown here in good position for visualization, the
actual input positions are arbitrary). Bottom left: Registra-
tion after applying our algorithm to overlapping pairs of
scans. Bottom right: Registration after applying ICP and er-
ror relaxation to the initial pose produced by our algorithm.
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six dimensional table. For each triplet of points in the model
shape and each triplet in the data shape, the transformation
between the triplets is computed and a vote is recorded in
the corresponding cell of the table. The entry with the most
votes gives the optimal aligning transform. Another vari-
ant of this scheme, the alignment method [HU90], tallies
for each transform proposed by two triplets of points how
many points of the data are brought by the transform close
to a point in the model. The transform which brings the most
data points within a threshold of a point in the model is cho-
sen as the optimal aligning transform. Voting methods are
guaranteed to find the optimal alignment between the data
and model shapes and are independent of the initial pose of
the input shapes. However, since these methods tend to be
costly, they are usually not used for global registration of
scan data.

The second class of approaches to the registration prob-
lem tries to solve the underlying correspondence problem:
for each point on the data shape, the goal is to find its cor-
responding point on the model. Given a set of correspond-
ing point-pairs, a rigid transform can be computed that best
positions the two shapes so that the distance between corre-
sponding points is minimized [ELF97]. When the initial po-
sitions of the model and data are close, the correspondences
and the transform are usually found using a variant of the It-
erated Closest Point algorithm (ICP) [RL01, MGPG04]. The
algorithm assigns to each point in the data its closest point in
the model as a correspondence, computes the aligning trans-
form, and applies it to the data shape. This process is iter-
ated until some convergence criterion is reached. The main
limitation of ICP and its variants is that, as a local optimiza-
tion method, it is not guaranteed to find the globally optimal
alignment, and therefore is only effective when the initial
position of the input shapes is close to the correct align-
ment [MGPG04]. In shape acquisition systems, the input
scans are usually positioned manually, and then registered
using ICP.

Both the voting schemes and the correspondence search
can be improved by using geometric descriptors. A geomet-
ric descriptor is a quantity computed for each point of the
model and the data, based on the shape of the local neighbor-
hood around the point. Points whose descriptors are similar
potentially correspond. High-dimensional, or rich, descrip-
tors such as spin images [JH99] and shape contexts [BMP02]
provide a fairly detailed description of the shape around each
point in transformation-independent manner. The advantage
of rich descriptors is that given a point in the data shape, it
is likely that only a few points in the model shape will have
a similar descriptor, and the point with the best-matching
descriptor is likely to be the correct corresponding point. In-
correct correspondences are few and can be removed using
outlier detection methods [FB81], which means that rich de-
scriptors can be used to directly solve the correspondence
problem. Huber [HH03] uses spin images computed from
subsampled input data for automatic global registration of

range data. Rich descriptors are particularly popular for ob-
ject recognition and shape retrieval, where the computation
of descriptors can be amortized over large number of com-
parison queries [BMP02, FMK∗03].

Low-dimensional descriptors, on the other hand, usu-
ally compute only a few values per point. Examples of
such descriptors include curvature and various curvature-
based quantities such as shape index [Koe90] and curved-
ness [KD92]. Low-dimensional descriptors are typically
much easier to compute, store, and compare than high-
dimensional rich descriptors. However, for a given point in
the data shape, there may be many points in the model shape
with the same descriptor value. Therefore, low-dimensional
descriptors are usually used in conjunction with a voting
scheme [BS97] to reduce the size of the search space or
with an iterative alignment scheme to improve the funnel of
convergence (set of starting positions which result in correct
alignment) [SLW02, GLB99].

Since the inputs to the registration algorithm are usually
large, a common speedup technique is to pick a set of fea-
ture points on the model and data based on the computed de-
scriptor values [MKY01]. The registration is then performed
only with respect to the feature points, which results in sig-
nificant reduction of the size of the search space. Feature
extraction methods, however, can suffer from the problem
of picking inconsistent points on the model and data, since
the two shapes are processed separately. The resulting set
of feature points, therefore, may not have a good alignment.
Because of possible errors in feature selection, correspon-
dence assignment techniques based on geometric descrip-
tors usually build large correspondence sets to increase ro-
bustness to incorrect features and pairings. Therefore, these
methods, unlike the voting schemes, do not make use of the
low-dimensionality of the aligning rigid transform.

Contributions. In this paper, we develop a new global
registration algorithm, based on robust feature identification
and correspondence search using geometric descriptors. The
main contributions of our method are as follows:

• Our algorithm makes use of the fact that the aligning
transform is low-dimensional to robustly find a small set
of matching point-pairs that specify the optimal align-
ment.

• We focus on identifying a small number of feature points
on the data shape, and then searching the entire model
shape for correspondences. This approach avoids the
problem of selecting incompatible features that is com-
mon in other feature-based registration methods.

• We use a novel shape descriptor, based on performing in-
tegral operations on the underlying shape, for identifying
features in the data and selecting potential correspondence
points in the model. Our feature selection algorithm picks
points on the data shape which have uncommon descriptor
values across a range of scales.

• For each feature point, the correspondence search algo-
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rithm examines the entire model shape to identify the op-
timal corresponding point. The search is made efficient
by using a measure of quality of correspondences based
on computing only intrinsic quantities of the model and
data shapes. This allows us to avoid computing an align-
ing transformation, and results in an efficient branch-and-
bound algorithm. Additionally, we use the rigid transform
constraints for efficient pruning of the search space.

• Since our algorithm only uses descriptor values, which
are invariant under rigid transforms, and intrinsic geomet-
ric properties of the input shapes, we are able to align
the model and data shapes without any assumptions about
their initial position. The pose produced by our algorithm
is further refined by ICP, producing an automatic global
registration pipeline.

2. Integral Volume Descriptor

Let P be the input shape, consisting of N points p1 . . .pN .
The input can be specified as a mesh or as a point cloud.
An m-dimensional geometric descriptor is a function that as-
signs to each point p∈ P a vector f (p)∈ IR

m. To be useful in
registration algorithms, a descriptor should be invariant un-
der rigid transformations, robust to noise, and based on lo-
cal geometry around p (since the input shapes may be only
partially overlapping). We will restrict our attention to low-
dimensional descriptors, since they are cheaper to compute,
store, and compare than rich descriptors.

Most of the common low-dimensional shape descriptors
are based on differential quantities of the shape, since they
are invariant under rigid transformations. The main limita-
tion of differential descriptors, which has made them unpop-
ular in registration algorithms, is that any noise present in
the input gets amplified when derivatives are computed. As
a result, algorithms that rely on differential descriptors need
to perform careful smoothing of both data and model shapes.

An alternative approach, that has yielded promising re-
sults in object recognition and feature classification, is to use
local shape invariants that are based on integration instead of
differentiation [MHYS04, CRT04]. Integral descriptors re-
tain the desirable properties of differential invariants such
as locality and invariance under rigid transformations, but
are more robust to noise. Manay et al. [MHYS04] showed
that integral invariants have descriptive power comparable
to curvature-based descriptors, but are more effective in 2D
object recognition in the presence of noise. In this section,
we extend the integral invariants of [MHYS04] to 3D.

2.1. Definition of Descriptor

We develop a 3D integral invariant, called the integral vol-
ume descriptor. This invariant is defined at each vertex p of
the input shape as follows,

Vr(p) =
Z

Br(p)∩S
dx. (1)

r
p

Vr(p)

(p)Br
r

p

Vr(p)

(p)Br

(a) (b)

Figure 2: Illustration of the volume integral descriptor in
2D. (a) We take the intersection of a ball of radius r centered
at point p with the interior of the surface. (b) Discretization
of the volume descriptor as computed by our algorithm. The
cell size of the grid is ρ.

Here the integration kernel Br(p) is a ball of radius r cen-
tered at the point p, and S is the interior of the surface rep-
resented by P. The quantity Vr(p) is the volume of the in-
tersection of the ball Br(p) with the interior of the object
defined by the input mesh. The invariant is illustrated in 2D
in Figure 2(a). Assuming the intersection of S and Br(p) is
simply-connected, the volume descriptor is related to mean
curvature at p as follows,

Vr(p) =
2π
3

r3 − πH
4

r4 +O(r5). (2)

The leading term is the volume of the half-ball of radius r,
and the correction term involves the mean curvature H at the
point p.

To show that this descriptor is robust to noise, let P be
the patch that bounds the surface where it intersects the ball
Br(p). Noise causes a perturbation that moves p to p′ and
thus the kernel ball Br(p) undergoes a translation to Br(p′).
The latter intersects the perturbed surface in a patch P ′.
Translating Br(p′) back to Br(p) moves P ′ to a patch P∗.
Apart from a negligible part along the intersection with the
ball Br(p), the change of the value of the volume descrip-
tor is given by the oriented volume ∆V between P and P∗.
Let us assume that P can be expressed as a parametric sur-
face s(u,v). We express the perturbation towards P∗ using a
displacement field τ(u,v) in normal direction of each point
of P . Then, the change in volume descriptor at p due to the
perturbation can be shown to be

∆V =
Z

P
τ(u,v)dA−

Z

P
τ2(u,v)H dA+

1
3

Z

P
τ3(u,v)K dA,

(3)
where K is the Gaussian curvature at p. We assume the per-
turbation noise is independently, identically distributed with
mean zero and variance σ2. Let Hmax be the maximum mean
curvature over the patch P , and A be the area of the patch,
then the expected change in the volume descriptor can be
bounded by |E [∆V ] | ≤ Hmaxσ2A. The change in descriptor
value relative to the volume of the integration kernel is pro-
portional to σ2/r2, which shows the robustness of the de-
scriptor to noise.
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Figure 3: Values of the normalized volume descriptor computed for the bunny model (a) for small and (b) large integration
kernels. We normalize the descriptor value with respect to the volume of the ball Br to ease visualization (c) Feature points
picked by our algorithm on the bunny model. Small-scale features, shown as yellow spheres, are persistent for small values of
the integration kernel. Features that are persistent over large kernel radii are shown in red.

2.2. Implementation

The integral volume descriptor can be computed efficiently
by a convolution of the occupancy voxel grid GO with the
ball grid GB (Figure 2(b)). GO(c) = 1 if the voxel c lies in-
side the shape or intersects the boundary, and is zero oth-
erwise. The ball grid GB contains the scan-converted ball
of radius r placed at the center of the grid. The value of
the volume descriptor at each cell c is given by V (c) =
(GB ∗GO)(c). The convolution can be computed efficiently
by using the Fourier transform of the ball grid and the occu-
pancy grid.

The occupancy grid GO can be computed using scan con-
version algorithms for meshes [NT03] or ray shooting algo-
rithms for point clouds [AA03]. We set the grid size ρ to be
large enough to account for the perturbation of the vertices
due to noise. Once the convolution is computed, the value
of the volume descriptor at each vertex of the input shape is
given by the value of the descriptor at the voxel containing
the vertex.

Holes in the input surfaces affect the value of the volume
descriptor of all cells that lie within distance r of the hole,
since they result in gaps in the occupancy grid. Therefore,
we modify our descriptor computation to be robust to gaps
in the surface. If the hole is small, we fill it by performing a
dilation of the occupancy grid by a few voxels, followed by
a contraction. If desired, other more expensive hole-filling
methods [DMGL02, NT03] can be used, however, the dila-
tion method is fast and effective in filling small holes which
are common in range data due to noise in the scanning.

Integral descriptors are particularly suited for multiscale
representation since the scale is given by the radius of the
kernel Br. Figures 3 (a) and (b) show the volume descriptor
computed for the Stanford Bunny model for two different
ball radii. In Section 3.2 we describe an algorithm that uses
the multiscale representation of the volume descriptor to ro-
bustly identify persistent features.

3. Feature Point Selection

Our registration algorithm is based on finding correspon-
dences in the model Q for a small number of feature points
picked from the data shape P. The features are selected in
such a way that makes the search for correspondences par-
ticularly simple. The key property of our feature selection
algorithm is that feature points should come from regions
with rare descriptor values. Since the data and model shapes
are similar over the matching region, and we use descriptor
values to select potential corresponding points in the model
for each feature point in the data, points with rare descrip-
tor values are likely to have only a few potential correspon-
dence points. Thus, our feature selection algorithm specif-
ically picks points such that the resulting search for corre-
spondences will be fast. Additionally, we do not need to
select many points as features, since a rigid transform can
be specified using only a small number of points. Selecting
a small number of feature points, such that each will have
only a small number of potential correspondences results in
a tractable correspondence search problem.

We first describe an algorithm for a general descriptor,
and then show how we use the scale-space representation of
the volume descriptor together with a persistence [CZCG04]
algorithm to robustly select feature points at multiple scales.

3.1. Basic Algorithm

Let f be the geometric descriptor which associates with each
point pi a value f (pi). The descriptor can be of any dimen-
sion, in this section we assume that the descriptors are one-
dimensional f (pi) ∈ IR. A point p is defined to be a feature
if its descriptor value is rare among all descriptors computed
for the data shape P. The feature point selection proceeds as
follows:

1. Compute a histogram of descriptor values, f (pi) for all
points in P. The number of bins b in the histogram is com-
puted using Scott’s rule, b = 3.49σ f N− 1

3 , where σ f is the
standard deviation of the N descriptor values [Sco79].
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2. To select feature points, we identify the k least populated
bins such that the total number of points in these bins is
smaller than some maximum threshold s. The points that
belong to these bins are the potential features. Intuitively,
features are those points which are dissimilar from the
rest of the shape, which is captured by the low occur-
rence of their descriptor values. The parameter s controls
the tradeoff between accuracy of the transform (more cor-
respondences) and running time of the algorithm. In our
implementation, we set s = 0.01N.

3. Since nearby points are likely to belong to the same
feature, we want to prevent the algorithm from picking
points that are too close to each other. We also want the
points to cover the whole shape since in case of partial
matching we do not know a priori which part of the data
shape will overlap with the model. When a point pi is
picked, we mark all points that fall into a ball of radius
Re around pi as unavailable for selection. Enforcing the
minimal separation distance between the feature points
also results is more stable configurations in the corre-
spondence search stage of the algorithm (Section 5).

Notice that this process is not invariant to the order of
points in P. This means that it cannot be used to pick canon-
ical points on the data and model shapes. As mentioned be-
fore, we do not rely on feature points being canonical, since
we will search the entire model shape for correspondences,
instead of trying to match up canonical points. This means,
as long as a feature point lies in the overlap region between
the model and data, it will have a correspondence assigned
to it by the matching stage of our registration algorithm.

The above algorithm works with any kind of descriptor
which can be represented as a vector in IR

m. Since we are
picking as features those points of P that have uncommon
descriptor values, we need a descriptor that is robust to noise,
making integral descriptors particularly well suited for this
kind of approach. Figure 5(b) shows the feature points se-
lected on the dragon model corrupted with zero-mean Gaus-
sian noise.

3.2. Scale-space Representation and Persistent Features

We further improve the robustness of the feature selec-
tion algorithm by considering the scale-space representa-
tion of the descriptor. Integral descriptors are particularly
well suited for such approach, since the scale is naturally
controlled by the radius of the integration kernel Br, but
other scale-space representations, such as curvature scale
space [MKY01, PKG03] can also be used.

If a point p is an actual feature point, it should be present
over a set of consecutive scales of the descriptor. A point
that is an outlier, on the other hand, is likely to disappear as
a feature as the scale is varied. Therefore, we use the persis-
tence [CZCG04] of a feature point in the scale-space repre-
sentation to identify true features and discard outliers.

Most shapes contain features at different scales, so we
do not expect a point to be a feature over the entire scale-
space of the descriptor. Instead, we define as a feature a point
whose descriptor value is rare over a set of consecutive ker-
nel radii of the volume descriptor. Small scale features will
be persistent for small radii of the descriptor and large-scale
features over large radii, and outliers may look like features
for some radii but are not persistent. In addition to identify-
ing a point as a feature, our algorithm automatically identi-
fies the scale of the feature.

To implement the persistence algorithm, we sample the
scales of the volume descriptor at discrete intervals. We di-
vide the range rmin ≤ r ≤ rmax of possible ball radii into k in-
tervals (k = 5 in our implementation) and convolve the occu-
pancy grid with the different ball grids. To avoid discretiza-
tion errors, rmin is set to 10ρ, where ρ is the resolution of
the voxel grid. We also limit rmax to some fraction (usually
set to 0.1) of the diameter of the input shape to preserve the
locality property of the shape descriptor. We also normalize
the magnitude of the volume descriptor for each radius r by
the volume of the ball Br. For a point p to be a feature, it
should be selected as a feature for a set of continuous scales.
We use the basic algorithm described in Section 3.1 to iden-
tify feature points for each radius of the volume descriptor,
and then select only those points that are a feature for at least
two consecutive radii.

Figure 3 shows feature points selected for the bunny
model using the scale-space algorithm. Most of the features
are persistent over large radii in the scale-space representa-
tion, except for features near the eyes, which are persistent
only over small scales.

The result of the feature selection stage is a set of feature
points P′ selected from the data shape. For each feature, we
are given the coordinates of the point, scale-space represen-
tation of the volume descriptor, and the range of radii for
which this point was classified as a feature. We now develop
an algorithm that finds, for each feature point on the data, a
corresponding point on the model.

4. Distance Metrics

Given a set of n feature points P′ selected from data shape
P, the goal of the correspondence search algorithm is to find,
for each pi ∈ P′, a point qi ∈ Q, that is the best match to pi.
Let P′ and Q′ be two sets of points with correspondences
given as (pi,qi). We present two ways of evaluating the qual-
ity of the correspondence based on the coordinates of the
points (pi,qi).

The standard measure of distance between two point sets
with known correspondences is the coordinate root mean
squared error, or cRMS. This error measures how close each
point pi comes to each corresponding point qi after an opti-
mal rigid aligning transform is computed for the entire set of
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corresponding points.

cRMS2(P′,Q′) = min
R,t

1
n

n

∑
i=1

||Rpi + t−qi||2, (4)

where R is a rotation matrix and t is a translation vector. The
optimal aligning rigid transformation needs to be computed
before the error can be evaluated, which can be done using
one of the methods described in [ELF97]. The cRMS dis-
tance metric is the most frequently used measure of residual
error in registration algorithms.

An alternative metric of distance between two point sets
with known correspondences is the distance root mean
squared error, or dRMS. This metric is commonly used in
computational molecular biology for comparing the similar-
ity of two protein shapes [Koe01]. The dRMS error is com-
puted by comparing all internal pairwise distances of the two
point sets, and is defined as

dRMS2(P′,Q′) =
1
n2

n

∑
i=1

n

∑
j=1

(||pi−p j||−||qi−q j||)2. (5)

The triangle inequality and the property that the optimal
transform aligns the centroids of P′ and Q′ allows us to up-
per bound dRMS using cRMS as follows,

dRMS(P′,Q′) ≤
√

2 cRMS(P′,Q′). (6)

To compute the lower bound, we need to examine both
Q′ and its reflection around any arbitrary plane Q′ (since
dRMS is invariant under reflection, but cRMS is not). The
lower bound can be shown to be

1
k
√

n
min(cRMS(P′,Q′),cRMS(P′,Q′)) ≤ dRMS(P′,Q′).

(7)
Here n is the number of corresponding point pairs and k is
a small constant, depending on ratio of the diameter of the
data shape to the feature exclusion radius used in Section 3.
These bounds mean than when the dRMS of two point sets
is small, their cRMS will also be small (when there is no re-
flection), indicating that the point sets are in good alignment.
Therefore, we can use dRMS instead of cRMS to evaluate
how well two point sets correspond.

dRMS has the advantage that it does not require compu-
tation of the aligning transform before the quality of the cor-
respondence can be evaluated. It is, in fact, only comparing
intrinsic properties of the two sets of corresponding points,
namely the internal pairwise distances of each pointset, as
opposed to comparing the distances between the two point
sets. This means that, given the set of feature points P′, its
pairwise distance matrix needs to be computed only once,
and then compared to pairwise distance matrices of the po-
tential correspondence sets Q′. Additionally, since only in-
trinsic properties of the point sets are examined in dRMS
computation, we will be able to efficiently prune correspon-
dence sets that contain wrong matches without having to

compare the entire sets P′ and Q′. This will allow us to de-
velop an efficient branch-and-bound algorithm described in
the next section.

5. Correspondence Search

5.1. Computing Potential Correspondences

Let P′ be the set of n points picked by the feature se-
lection algorithm. For each feature point pi we also have
the scale-space representation of the volume descriptor
(Vr1(pi), . . . ,Vrk (pi)), and the values ri

a,r
i
b, which are the

minimum and maximum radii of the kernel of the volume
descriptor for which pi is a persistent feature. We now use
the descriptor values to select potential corresponding points
in the model shape Q for each feature point.

For our descriptor-based matching algorithm, we first
compute the same scale-space representation of the volume
descriptor on the model shape. That is, we compute vol-
ume descriptors for radii r1,r2, . . . ,rk for each point on the
model shape. Let p be a feature point selected from the data
shape, and let rb be the largest feature radius. We perform a
range query in the model, and select all points q such that
|Vrb(p)−Vrb(q)| < ε. We can also perform the range query
for any radius between ra and rb of p, however we prefer the
largest possible radius since it gives the most stable descrip-
tor. The variation of the descriptor values ε can be related to
the grid size ρ and the radius of the volume descriptor r as
ε ≈ 3ρ

4r . This accounts for the variation in the value of the
volume descriptor due to discretization using the voxel grid.
Since we pick ρ to be large enough to account for noise in the
data, therefore ε also absorbs the noise term in Equation 3.

The range query results in the set of points Cinitial(p)
whose volume descriptor for the given radius is similar to
the descriptor value at p. Similar to the approach in the fea-
ture selection algorithm, we want to pick a set of points that
represent distinct areas of the model. We cluster all points in
Cinitial(p) into clusters of radius Rc and pick from each clus-
ter the point q that minimizes |Vrb(p)−Vrb(q)|. This gives
the final set of correspondences for p, C(p). We repeat this
procedure for each point in the feature set.

Using a range search instead of exact match of the de-
scriptor values ensures that the correct correspondence of p
is included in the set Cinitial(p) (under a reasonable noise
model). After clustering, we are guaranteed that the correct
correspondence is within Rc of a point in C(p). It follows
that the correct set of corresponding points of P′ has cRMS
at most Rc, and dRMS is bounded by

√
2Rc. The value of Rc,

therefore, is a knob that controls the quality of the resulting
registration.

5.2. Matching Algorithm

Even though we have a comparatively small number of fea-
ture points, and each feature point has a small number of po-
tential correspondences, exhaustive exploration of the space
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of all correspondences can still be prohibitively expensive.
The key observation that will allow us to develop a fast algo-
rithm is that we can use the rigidity constraints of the align-
ing transform to efficiently eliminate a large set of potential
correspondences.

Given a set of feature points P′ = (p1, . . . ,pn) selected
from the data shape, and a set of potential correspondences
for each point in the model shape (C(p1), . . . ,C(pn)), we
want to select a set of points Q′ such that qi ∈C(pi) and the
error metric of Equation 5 is minimized over all sets of such
correspondences. Since we will only be considering points in
Q that belong to some potential correspondence set, we will
change the notation slightly in this section to simplify the ex-
planation of the algorithm. Given a feature point pi, we will
designate the j-th member of the potential correspondence
set C(pi) as q j

i .

Consider a pair of feature points (pi,p j). According to
their descriptor values, any pair of points (qk

i ,q
l
j) can be

used as corresponding points. Rigid transform constraints
tell us that the distance between pi and p j needs to be the
same as the distance between their correspondences in the
model. Since we are using correspondences that are only
approximate within the clustering radius Rc, the correspon-
dence pairs need to satisfy the relationship

∣

∣

∣
||pi −p j||− ||qk

i −ql
j||

∣

∣

∣
< 2Rc. (8)

We apply this thresholding rule in a branch-and-bound al-
gorithm for finding the best set of correspondences. Let
Q′ = (q∗

1 , . . . ,q∗
n ) be the current best set of correspondences

for the set of feature points P′, and let Emin = dRMS(P′,Q′)
be the error of the current best correspondence set. We ini-
tialize the set of correspondences using a greedy algorithm
described in Section 5.3. The branch-and-bound correspon-
dence search proceeds as follows:

1. Assume corresponding points have been assigned for the
first k − 1 feature points, which gives us a partial cor-
respondence set (qc1

1 , . . . ,qck−1
k−1 ). We are looking for the

correspondence for the k-th feature point.
2. Threshold: For each potential correspondence of pk,

apply the thresholding test of Equation 8 with respect
to all previously selected points. That is we verify that
Equation 8 holds for all pairs (pi,pk),(q

ci
i ,q j

k) for i =
1, . . . ,k − 1. If one of the tests fails, we can prune the
branch that includes the correspondence pair (pk,q

j
k).

3. Prune: For each q j
k that passes the thresholding test, form

the partial correspondence (qc1
1 , . . . ,qck−1

k−1 ,q j
k) and evalu-

ate the dRMS error of this partial correspondence. If the
partial error is greater than the error of the current best
estimate Emin, discard q j

k as a correspondence.
4. Branch: For each of the remaining q j

k that pass both the
thresholding and the pruning tests, assign ck = j, and re-
cursively invoke Step 1. Once all correspondences for pk

have been examined, we backtrack and assign the next
correspondence to the previous point pk−1.

5. Bound: If all feature points have been assigned corre-
spondences, compute the error of the match E. If the
dRMS error is less than Emin, we potentially have a bet-
ter correspondence set, and a new bound, unless the cur-
rent assignment is actually a reflection. We can rule out
reflection by making sure the cRMS error of the current
correspondence set is also small. If the cRMS error check
passes, we assign Emin = E and Q′ = (qc1

1 , . . . ,qcn
n ).

The branch-and-bound algorithm is possible because we
are using the dRMS error metric, which can be computed
for partial correspondences without the need for the optimal
aligning transform. The only time when the aligning trans-
form in computed is in the last step, and only if we need to
update the bound.

5.3. Greedy Bound

The initial correspondence and error bound is established us-
ing a hierarchical greedy algorithm. The algorithm first finds
the best correspondences for each pair of feature points.
Then it combines the pairs to form best corresponding sets
of four points, then combines fours into eights and so on.

1. Form pairs: For each pair of feature points (pi,p j) ∈ P′,
choose the best pair of corresponding points (qk

i ,q
l
j) in

their associated potential correspondence sets. The best
matching pair of correspondences is one that minimizes
the distance metric penalty

∣

∣

∣
||pi −p j||− ||qk

i −ql
j||

∣

∣

∣
.

This gives us the set E2 of O(n2) two-point correspon-
dences. We sort E2 in order of increasing distance dis-
crepancy.

2. Combine pairs: Combine two-point correspondences
into four-point correspondences. Given a two-point cor-
respondence e ∈ E2, find the two-point correspondence
in E2 that does not contain any of the points of e, and that
minimizes the dRMS error of the resulting four-point cor-
respondence. Remove from E2 all correspondences that
have the same endpoints as the new four-point correspon-
dence, and continue until the set E2 becomes empty. Call
this set E4, and again sort it by increasing dRMS error.

3. Build hierarchy: We continue merging in this manner,
merging pairs of elements of a set Ek to form the set E2k.
We typically stop at either E8 or E16.

4. Assign the rest of the points: We pick the correspon-
dence from the resulting set Ek that has the smallest
dRMS error. We use this partial (8 or 16 point) corre-
spondence to compute the rigid transform (R, t) that min-
imizes the cRMS error (Equation 4) and apply it to the
entire feature point set P′. For all points in pi ∈ P′ that
do not yet have correspondences, we assign the point
q j

i ∈ C(pi) that is closest to R(pi) + t. We use this as
the initial correspondence (P′,Q′) and initialize Emin to
dRMS(P′,Q′) in the algorithm described in Section 5.2.
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This approach is greedy because each step picks the best
correspondences to merge together and never backtracks.
Therefore is it possible that an incorrect correspondence is
found for P′. However, as long as some points are matched
to their correct corresponding points in Step 1, the algorithm
tends to produce a tight bound that greatly speeds up the ba-
sic branch-and-bound algorithm. In practice, this approach
often results in a very good guess of the correct alignment,
resulting in effective pruning in the branch-and-bound algo-
rithm.

5.4. Partial Matching

When the model and data shapes overlap only over part of
their extent, not all the feature points picked on the data will
have corresponding points in the model. Therefore, we mod-
ify our matching algorithm to handle such partial matches.

In addition to performing the search over all correspon-
dences, we also need to find the subset of the feature points
that are the same in the model and data. We augment the set
of potential correspondences for each point, C(pi), with the
not present value ∅. When a point is assigned ∅ as a cor-
respondence, it does not contribute to the computed dRMS
error. We want to maximize the number of feature points that
get assigned a valid corresponding point in the model, while
still keeping the dRMS error of the correspondence set low.

Suppose we know that k feature points are missing from
the model, but do not know which k. We can run our cor-
respondence search algorithm, but prune away any branch
that has more than k points assigned the ∅ correspondence.
This will select the best n− k feature points that have the
best correspondences. Since we do not know k, we can run
the same algorithm for k ranging from 0 to n−3 (since only
three points are needed to specify a rigid transform). For ro-
bustness, we actually require at least 5 points to have a valid
correspondence. We can detect the maximum k since the er-
ror will sharply decrease once n−k reaches the correct num-
ber of common feature points. Figure 6(d) shows the dRMS
error vs. the number of matched feature points for the David
model.

6. Results

6.1. Object Registration

We applied our algorithm to a number of registration prob-
lems. Although in the examples the model and data shapes
are shown in similar positions, the reader should keep in
mind that our algorithm does not depend on any assumptions
about the initial positions of the input shapes, and the input
shapes were given to our algorithm in arbitrary positions.
Timing results for the experiments are given in Figure 4.

In the first example, we use the algorithm for whole ob-
ject alignment in the presence of significant noise. We align
the dragon model to a copy of itself corrupted by zero-mean

model selection num corr num
size time features time corr

Dragon 29,455 6.3 38 2.2 9
David 68,480 84.5 15 35.7 6
Bunny 35,000 21.8 11 13.9 4
Part 20,002 5.9 13 15.7 8
Hinge 45,311 19.0 30 1.2 12

Figure 4: Input size, running time (in sec), and number of
feature points for the registration experiments. In all cases
the model size and data size are similar, so we only give
the size of the model. The feature selection time includes de-
scriptor computation for both data and model. We also indi-
cate the number of selected feature points and average num-
ber of potential correspondences (|C(p)|) for each point.

Gaussian noise. Figure 5 shows the results. Our alignment
brings the data (noisy) shape close enough to the model
(smooth) shape that applying one iteration of standard ICP
with point-point error metric [RL01] brings the shapes into
exact alignment.

Figure 6 shows the results of applying our algorithm to
register partially overlapping range data. We take two raw
scans of the David’s face, subsample them, and convert to a
mesh representation. We do not perform any other smooth-
ing or surface reconstruction. The scans are given in arbi-
trary initial positions (scanner coordinates) and brought into
close alignment by our algorithm. The pose computed by our
algorithm is refined by running three iterations of ICP. Fif-
teen feature points were picked on the data shape, eight of
which were assigned correspondences and used to compute
the alignment.

Finally, we use our algorithm to build a complete model
out of constituent range scans. Given as input ten range scans
of the Stanford bunny taken from different view points, we
bring all scans to a common coordinate frame using our
algorithm. The rough alignment accumulates errors since
we align each scan only to one other, and do not perform
any bundle adjustment. However, the scans are now close
enough to refine the pairwise matches using ICP, and dif-
fuse the accumulated error over all scans using a global ad-
justment algorithm [Pul99]. This gives us a completely au-
tomatic model construction pipeline. The result is shown in
Figure 1.

6.2. Symmetry Detection

Our registration algorithm can be trivially extended to detect
symmetry in objects by matching an object to a copy of it-
self. Instead of returning the best matching orientation, we
return all matches with small error. Since the feature points
picked by our algorithm are spaced far apart, the difference
between the symmetry configurations and other matches will
be large. Figure 7 shows the results of detecting symmetries
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(a) (b) (c)

Figure 5: Dragon example. (a) Input to the matching algorithm: Smooth dragon (the model) and noisy dragon (the data) with
descriptor values shown at each point. Even under noise the descriptor values at feature points look similar. (b) Feature points
picked on the data shape. (c) Top: Registration after applying our algorithm. Bottom: Registration after refinement by ICP.
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Figure 6: (a) Two scans of the David’s face. Feature points picked on the data shape are shown in red.(b) Registration after
applying our algorithm. (c) Registration after refinement by ICP. Points actually used to compute alignment in (b) are shown
in red. (d) Graph of dRMS error as the function of the number of matched features. Notice the significant increase in error for
more than 8 points, which is the correct number of common features.

of a mechanical part. Notice that the graph of error in Fig-
ure 7 shows eight configurations with small error, which cor-
responds to the eight-way symmetry of the model. We expect
that this method can be extended to be able to detect partial
symmetries in the shape, which is not possible using existing
methods for symmetry detection [KFR04].

6.3. Articulated Matching

Our global registration algorithm can be used to discover
rigid parts in objects that undergo articulated deformation.
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Figure 7: Symmetry detection using registration. (a) Feature
points picked by our algorithm, when the shape is aligned to
a copy of itself. (b) Graph of the error for different corre-
spondence sets. The eight correspondences with small error
indicate the eight-way symmetry of the shape.

In this case, P and Q are two positions of the object. We
want to decompose the shape P into the minimum set of
parts P1 . . .Pk, such that each Pi can be aligned to a part of
Q using a rigid transform. Here, we present a simple proof
of concept implementation.

We perform articulated decomposition by partial match-
ing of P and Q. This gives the transform R1, t1. We apply
the transform to the data shape, and classify all points of the
data that fall within a threshold of the model as belonging to
component P1. We then separate P1 and the corresponding
Q1 from the input shapes and repeat the partial matching al-
gorithm with P−P1 and Q−Q1. We repeat the process until
the size of the residual set becomes too small. Figure 8 shows
the result of segmenting a shape into rigid components using
this algorithm.

The features picked on the data shape in Figure 8 also
point one of the advantages of the non-canonical nature of
our feature selection and correspondence search. If a linear
feature is present in the input, such as the long edge of the
hinge model, our feature selection algorithm discretely sam-
ples the edge at intervals given by the exclusion radius Re.
If we were picking and matching features on both data and
model shapes, this discrete sampling could potentially result
in two sets of points which do not match each other. How-
ever, since we only pick features on one shape, the data, and
then search the entire model, we always find a compatible set
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(a) (b)

Figure 8: Simple articulated matching. (a) Two input posi-
tions of the shape. Feature points picked by our algorithm
are shown in red. (b) Using repeated partial matching, the
algorithm discovers two rigid components.

of points (to within the error given by the clustering radius
Ec) with which to align the features.

7. Conclusions and Future Work

We presented a global registration algorithm that aligns two
three-dimensional shapes without any assumptions about
their initial positions. Our algorithm is able to align whole
and partially overlapping shapes, and is robust to noisy data.
The algorithm works well in the presence of strong point-
like features in the input data. In the future, we would like
to extend the algorithm to align linear features directly in-
stead of performing point sampling. Additionally, when the
input shapes do not have strong features, the correspon-
dence search space examined by the algorithm becomes
quite large. However, in this case, the shape is relatively
simple, and ICP-like approaches should have large conver-
gence funnels. We would like to study the exact relationship
between the size of the features, the performance of global
registration, and the performance of ICP to develop an even
more complete automatic registration system that works for
arbitrary input data with almost no restrictions.
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